5. NATURAL BACKGROUND LOSS

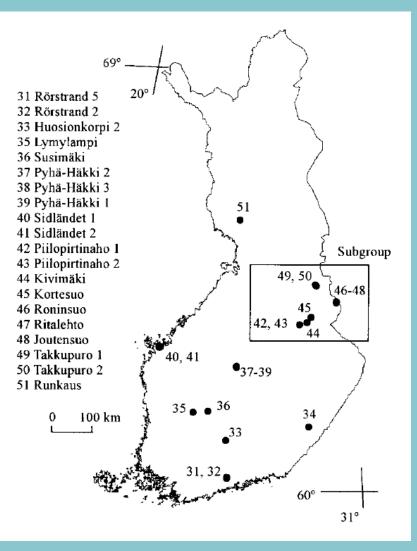
- Natural background loss of nutrients depends e.g. on
 - Geology (mineral composition, weathering), climate
 - Soil, topography, vegetation
- Natural background loss has to be known to estimate anthropogenic load
 - Especially from forestry
 - Source apportionment
- Difficult to find pristine counterparts
 - Especially for agricultural areas (e.g. clayey soils)
 - Atmospheric N
 - Remaining "pristine" catchments usually small, scale effect?

Strong interseption

Soil protected by perennial vegetation

Kuva: Harriet / Ikkunasuomenluontoon.fi

High infiltration


No added nutrients P saturation of Fe ja Al oxides low N bound to vegetation

Phosphorus loss from land to ocean

Phosphorus species	Pre human 10 ¹² g y ⁻¹	Present 10 ¹² g y ⁻¹
Total P	10.8–17.8	18.7–31.4
Geochemically reactive P	3.1–4.8	3.4–10.1

Natural background loss in Finland Study I

- Reference data to estimate nutrient losses from forestry (Mattsson ym. 2003)
- 21 semi-natural forested catchments (0.074– 38 km²) across Finland (excl. Northern Lapland)
 - No forestry activities in last 20–30 years
 → stem volume large (18 900 m³ km⁻² (national mean 9 300 m³ km⁻²)
 - Spruce 55%, pine 35%, broad-leaved trees 10%
 - Peatland
 - 10–71%, mean 33% (national mean 34%)
 - Atmospheric deposition the main anthropogenic pressure
 - Deposition, precipitation, stem volume largest in the south, runoff in the north
- Water quality monitored for 1997–1999 (on average 11 samples per year)
- Runoff estimated from reference catchments (no measuring weirs were built)

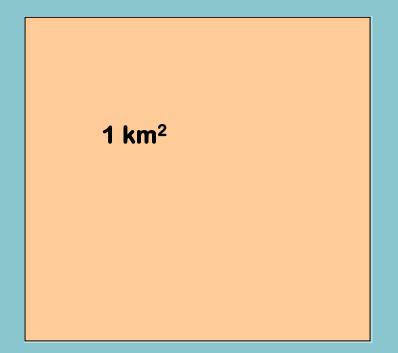
Results Study I

Total suspended solids

- Mean concentration 0.7 mg l⁻¹
- Erosion negligible, nutrients in a dissolved (or colloidal) form

Total phosphorus

- Mean concentration 15 µg l⁻¹
- Compare with: 6–80 μ g l⁻¹ in semi-pristine catchments in the USA (Smith et al. 2003)
- Mean loss **5.4 kg km⁻² y⁻¹** (2.1–18, mostly < 10 kg km⁻² y⁻¹)
- Concentration correlated positively with temperature sum and stem volume \rightarrow higher concentrations in the south

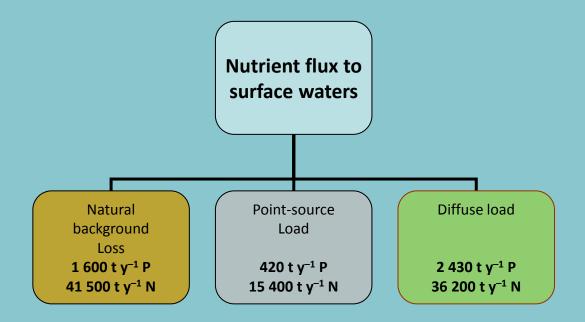

Reactive phosphorus

- Mean concentration 4.2 µg I⁻¹
- Dissolved P fractions were not analysed

Some units

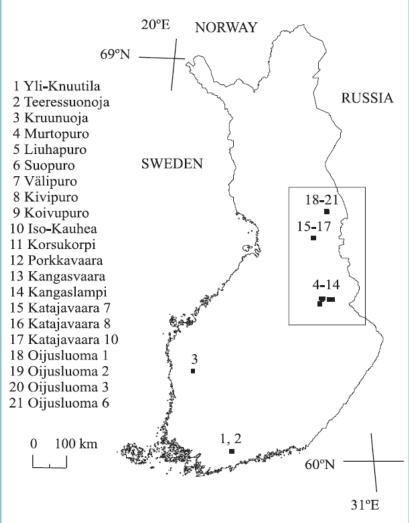
- In agriculture and forestry commonly: hectare (ha)
 - In this course mostly: square kilometre (km²)
 - 1 km² = 100 ha = 1 000 000 m²
 - Natural background loss
 - 5.4 kg km⁻² y⁻¹ = 54 g ha⁻¹ y⁻¹ = 5.4 mg m⁻² y⁻¹

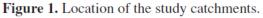
1000	1 ha									
900	1 ha									
800	1 ha									
700	1 ha									
600	1 ha									
500	1 ha									
400	1 ha									
300	1 ha									
200	1 ha									
100	1 ha									
m	100	200	300	400	500	600	700	800	900	1000



Results Study I

Total nitrogen


- Mean concentration 430 µg l⁻¹
- Compare with: 20–500 μ g l⁻¹ in the USA (Smith et al. 2003)
- Loss 140 kg km⁻² y⁻¹ (77–230 kg km⁻² y⁻¹⁾
- 95% organic N
- Concentration correlated positively with temperature sum and inversely with latitude \rightarrow concentrations higher in the south
- Concentration also correlated positively with spruce and stem volume
- Spruce is a climax species and thrives in more fertile soils \rightarrow more decomposable material
- Stem volume \rightarrow more decomposable material
- N is commonly the minimum nutrient in forests \rightarrow atmospheric N is efficiently bound
- NO₃-N
 - Mean concentration 8.8 µg l⁻¹
- NH₄-N
 - Mean concentration 8.5 µg l⁻¹
- General conclusion
 - TN and TP concentrations and losses higher in the south due to larger amount of organic matter and its stonger mineralisation
 - N:P ratio 29


Nutrient flux to surface waters in Finland in 2016

Natural background loss in Finland Study II

- 21 'unmanipulated boreal catchments, firstorder streams' (0.07–14 km²) in eastern Finland + 3 areas in southern and western Finland (Kortelainen ym. 2006)
 - Atmosheric load relatively low, thinning performed in some catchments
 - 2 catchment had a measuring weir, for others, runoff was estimated based on nearby catchments
- Monitored for 3–32 years (11–20 samples per year, sampling was aimed at flood periods)
- Explaining variables
 - Catchment characteristics
 - Altitude
 - Slope
 - Peat-%
 - Fertility
 - Stem volume of tree species
 - Climate
 - Temperature sum
 - Latitude
 - Precipitation
 - Runoff
 - Deposition

Results Study II

- 18 catchments in eastern Finland
 - Peat-% explained 52–75% of TOC, TN, TON, NH₄-N and Fe losses
 - Slope explained 56% ot TP loss (inverse relationship)
 - TOC loss explained 95% of TON loss and 61–73 % of $\rm NH_4-N,$ Fe and TP losses
- Stem volume and vegetation did not explain the losses
- Mean losses
 - 130 kg km⁻² y⁻¹ TN
 - 5.0 kg km⁻² y⁻¹ TP
 - 1.7 kg km⁻² y⁻¹ RP
- N mainly in an organic form (87%)
 - NO₃-N losses were marked (43–65% of TN) only in two fertile catchments in southern Finland
- The share of "dissolved" (<0.45 μm) fraction
 - 97% TOC, 94% TN, 79% TP
- N in deposition was retained by 59–92%
 - N minimum nutrient in forests

References

- Compton J, Mallinson D, Glenn CR, Filippelli G, Föllmi K, Shields G, Zanin Y. 2000. Variations in the global phosphorus cycle. In: Glenn CR, Prévôt-Lucas L, Lucas J. (Eds.), Marine Authigenesis: From Global to Microbial, pp. 21-33
- Kortelainen P, Mattsson T, Finér L, Ahtiainen M, Saukkonen S, Sallantaus T. 2006. Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Sciences 68:453–468
- Mattsson T, Finér L, Kortelainen P, Sallantaus T. 2003. Brook water quality and background leaching from unmanaged forested catchments in Finland. Water, Air, and Soil Pollution 147:275–297.
- Smith, Alexander, Schwarz. 2003. Natural Background Concentrations of Nutrients in Streams and Rivers of the Conterminous United States. Environmental Science & Technology 37:3039–3047.